Založeno v roce 2005 s podporou MŠMT ČR (projekt 1M0572)

Publikace

Neural network based bicriterial dual control with multiple linearization

Typ:
Konferenční příspěvek
Autoři publikace:
Název sborniku:
Proceedings of the IFAC Workshop Adaptation and Learning in Control and Signal Processing 2010
Místo vydání:
Antalya, Turkey
Rok:
2010
Klíčová slova:
neural networks, intelligent control, adaptive control
Adresa (www stránky):
příloha1:
příloha2:
Anotace:
A suboptimal dual controller for discrete nonlinear stochastic systems based on the bicriterial approach is proposed and discussed. Two individual criteria are designed and used to introduce one of the con°icting e®orts between estimation and control; caution and probing. A nonlinear system is modeled using a neural network (NN) of perceptron type. The unknown parameters of the network are estimated by a global estimation method, the Gaussian sum method (GSM), which allows to determine conditional probability density function (pdf) of the NNs parameters. The GSM in association with an idea of multiple linearization is chosen and utilized in the bicriterial dual control (BDC) approach. The probing component of the control law is determined for each local mode of estimated pdf separately and respects accuracy of each local estimate inherent in the estimated pdf. A comparison of the proposed modi—ed BDC and the BDC which uses a global point estimate only is shown in a numerical example.
 
Copyright 2005 DAR XHTML CSS